Habituation of an odorant-induced startle response in Drosophila.
نویسندگان
چکیده
Habituation is a fundamental form of behavioral plasticity that permits organisms to ignore inconsequential stimuli. Here we describe the habituation of a locomotor response to ethanol and other odorants in Drosophila, measured by an automated high-throughput locomotor tracking system. Flies exhibit an immediate and transient startle response upon exposure to a novel odor. Surgical removal of the antennae, the fly's major olfactory organs, abolishes this startle response. With repeated discrete exposures to ethanol vapor, the startle response habituates. Habituation is reversible by a mechanical stimulus and is not due to the accumulation of ethanol in the organism, nor to non-specific mechanisms. Ablation or inactivation of the mushroom bodies, central brain structures involved in olfactory and courtship conditioning, results in decreased olfactory habituation. In addition, olfactory habituation to ethanol generalizes to odorants that activate separate olfactory receptors. Finally, habituation is impaired in rutabaga, an adenylyl cyclase mutant isolated based on a defect in olfactory associative learning. These data demonstrate that olfactory habituation operates, at least in part, through central mechanisms. This novel model of olfactory habituation in freely moving Drosophila provides a scalable method for studying the molecular and neural bases of this simple and ubiquitous form of learning.
منابع مشابه
Plasticity of recurrent inhibition in the Drosophila antennal lobe.
Recurrent inhibition, wherein excitatory principal neurons stimulate inhibitory interneurons that feedback on the same principal cells, occurs ubiquitously in the brain. However, the regulation and function of recurrent inhibition are poorly understood in terms of the contributing interneuron subtypes as well as their effect on neural and cognitive outputs. In the Drosophila olfactory system, o...
متن کاملA Genetic Screen for Olfactory Habituation Mutations in Drosophila: Analysis of Novel Foraging Alleles and an Underlying Neural Circuit
Habituation is a form of non-associative learning that enables animals to reduce their reaction to repeated harmless stimuli. When exposed to ethanol vapor, Drosophila show an olfactory-mediated startle response characterized by a transient increase in locomotor activity. Upon repeated exposures, this olfactory startle attenuates with the characteristics of habituation. Here we describe the res...
متن کاملGSK-3/Shaggy regulates olfactory habituation in Drosophila.
Habituation is a universal form of nonassociative learning that results in the devaluation of sensory inputs that have little information content. Although habituation is found throughout nature and has been studied in many organisms, the underlying molecular mechanisms remain poorly understood. We performed a forward genetic screen in Drosophila to search for mutations that modified habituatio...
متن کاملHabituation and prepulse inhibition of acoustic startle in rodents.
The acoustic startle response is a protective response, elicited by a sudden and intense acoustic stimulus. Facial and skeletal muscles are activated within a few milliseconds, leading to a whole body flinch in rodents(1). Although startle responses are reflexive responses that can be reliably elicited, they are not stereotypic. They can be modulated by emotions such as fear (fear potentiated s...
متن کاملCentral synaptic mechanisms underlie short-term olfactory habituation in Drosophila larvae.
Naive Drosophila larvae show vigorous chemotaxis toward many odorants including ethyl acetate (EA). Chemotaxis toward EA is substantially reduced after a 5-min pre-exposure to the odorant and recovers with a half-time of ∼20 min. An analogous behavioral decrement can be induced without odorant-receptor activation through channelrhodopsin-based, direct photoexcitation of odorant sensory neurons ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genes, brain, and behavior
دوره 3 3 شماره
صفحات -
تاریخ انتشار 2004